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ABSTRACT

A functional architecture 1is defined to be a technology
independent specification of a system while a computer
architecture 1is a technology dependent realization of a
functional architecture. The functional architecture serves as
the "source" from which all implementations may be traced. This
paper reviews several functional architectures available in the
literature for robot control systems. For this paper, the term
robot control system refers to a complete system which includes
the sensory and modeling components of the system as well as the
actual control loops. The NASA/NBS Standard Reference Model for
Telerobot Control System Architecture (NASREM) is presented along
with the NIST approach to its realization. Interfaces for the
functional architecture are defined using the literature so that
extant algorithms can be implemented and evaluated in the system.
This approach is illustrated by considering the SERVO level of
NASREM in detail. Then, one possible computer architecture for
the realization of NASREM is shown. The result of choosing the
NASREM functional architecture is that it provides a technology
independent paradigm which can be mapped into a technology
dependent implementation capable of evolving with technology in
the laboratory as well as in space.

1. INTRODUCTION

System designers tend to approach problems with specific hardware
and software biases. Given some specific requirements, the
approach should be a careful analysis of available hardware and
software. However, because of economic as well as other
constraints, the process often degenerates into rationalizing why
a favorite computer language and familiar computer chips are
precisely what is need to solve the problemn. Often, the
requirements of the problem are manipulated into the form of how
to solve the problem using blackboards, whiteboards, hierarchical
control, heterarchical control, etc. The approach that is chosen
ultimately depends upon the research organization, project

manager, or thesis advisor. It would be illuminating to try to
forget some of these biases for a moment and instead concentrate
on the real requirements of the system. This paper will, at



least initially, try to refrain from the institutional bias of
the solution in order to define the problem better.

One approach to the design of a system is to analyze the problem
in order to develop a sufficient set of requirements that the
problem itself imposes upon the solution. Then these
requirements drive the solution. This approach, often called a
"point design" provides a system that does exactly (hopefully)
what it is supposed to do. Unless the specifications for the
system are written with extraordinary care, however, it is often
the case that the system must be modified to satisfy some
previously unstated but crucial requirements. Unfortunately, it
is often very difficult to modify a point design because the
system was designed to satisfy the design requirements
efficiently. It was not designed to be flexible. Consequently,
the tradeoff between efficiency and flexibility is critical in
obtaining a useful system.

Another approach to the design of a system is to develop a
generic functional architecture which encompasses all of the
functions associated with the ideal systenmn. In this approach,
efficiency may be sacrificed for flexibility. However, if the
capabilities of the system are subject to change over time, then
this flexibility is imperative. The assumption of this paper is
that there is no clearly superior approach to the design of robot
control systems and therefore opting for flexibility is the most
reasonable approach.

The word "architecture" has been used extensively in the
literature but a precise definition does not currently exist. 1In
this paper, there is a conscious attempt to separate the concept
of the functional architecture from that of the computer
architecture. As its name suggests, the functional architecture
is concerned with the functional aspects of the problem and every
attempt is made to make it technology independent. On the other
hand, the computer architecture is clearly technology dependent.
It represents a particular realization of the functional
architecture at some point in time. Consequently, if the same
functional architecture were implemented at a different time, it
is not unreasonable to expect that a totally different computer
architecture would be used in order to take advantage of
improvements in the state-of-the-art.

Given these definitions, the desigh procedure can be summed up in
the following steps:

1. Development of a functional architecture.

2. Development of a set of interfaces for the functional
architecture.

3. Development of the computer architecture.

4. Software and hardware development, testing, and



integration.

In looking through the literature, it is evident that many
researchers have developed architectures for robot control. Very
few of these architectures, however, are functional architectures
as previously defined because they are technology dependent.
Because of the immense amount of experience many researchers
possess, the design procedure often begins in the second or third
phase of the design process. Familiarity with the problem seems
to lead researchers to solve the problem without first formally
defining the functional architecture. As a result, the
realizations are far less flexible than they might be. This
process is essentially a "point design." Each researcher begins
the design process knowing precisely which algorithms are best
and an efficient system to execute these algorithms is developed.
There are no systems with the capability to easily interface
other control algorithms, robot models, sensory processors, etc.,
without major system redesign. Consequently, looking seriously
into the development of a functional architecture could have a
profound effect on the research community because of the
possibility of comparing competing approaches.

This paper is organized in the following way. The next section
will review some of the functional architectures associated with
complete robot control systems. This will be followed by a
description of NASREM. The approach to the NIST implementation
of NASREM will be presented.

2. ALTERNATIVE FUNCTIONAL ARCHITECTURES

The vast majority of work in robot control systems would not be
cited as functional architectures because of technology
dependence. Several functional architectures exist and this
section will described three of them.

Saridis [1] develops the concept of "intelligent control" for his
functional architecture. Intelligent control is the marriage of
artificial intelligence, control and operations research. The
approach employs hierarchy centered around the guiding principle
that there is decreasing precision with increasing intelligence.
Lower 1levels in the hierarchy are fast and precise but
fundamentally dumb. For example, in the control of a robot, the
level which controls the joints of the robot must support a
certain update rate for performance and stability. However, it
does not need to deal with the planning for why the action is
actually being performed. The functional architecture specifies
three levels in the hierarchy which in descending order of
intelligence are: the organization level, the coordination
level, and the hardware control level.

Brooks [2] describes a functional architecture based on what he
calls the subsumption principle. While the approach is applied



to mobile robots, it is clearly more generic. The basic idea is
that there is a hierarchy of functional modules which communicate
over low bandwidth channels. Each level in the hierarchy is
responsible for a certain function. For example, one level is
responsible for the goal of wandering around without colliding
with objects in the environment. A level superior to this could
take over some of the functions of the inferior level or
"subsume" its functionality by suppressing the 1lower level’s
outputs. As a result, mnultiple goals, multiple sensors,
robustness, and extensibility are possible when this functional
architecture is implemented. Brooks claims that subsumption is
superior to task decomposition because a level can perform
functions without instruction from a superior level. However,
this objection may be less a complaint about task decomposition
than about particular implementations. The subsumption
architecture itself has task decomposition in that each
functional module in the hierarchy is, in effect, decomposing a
task into the functions appropriate for the next 1level. The
objection Brooks may be describing is a system where all planning
is done in one box, all control in another, etc.

The subsumption architecture does exhibit some potential
problens. All sensory processing information is sent to all
levels and it is up to each level to pay attention or ignore the
data as it sees fit. Consequently, certain processes which are
inherently sequential may cause some problems. For example, in
processing an image, the identification and location of an object
through a noise reduction, feature extraction, and feature
classification sequence need not communicate with all layers in
the hierarchy since it is clear that certain levels will
definitely have no use whatsoever for the data. A more serious
concern about the subsumption architecture is that each level of
competence includes as a subset each earlier level of competence.
The problem is that it may be very difficult for the upper 1level
to take into account all of the details that the lower level must
deal with in order to be able to subsume its functionality.
Interestingly, this seems to be contrary to Saridis’ approach
where intelligence and precision at hierarchical levels are
inversely related. .The concept of hierarchy is normally used
precisely to avoid having higher levels know the details of lower
level’s processes.

Shafer [3] presents a functional architecture for sehsory
perception called CODGER which is based to some extent on the
Hearsay [4] system. In his system it is anticipated that the
perception subsystem is expected to use 90 % of the compute
power. There is a heterarchy consisting of a central database,
pool of knowledge intensive modules, and database manager which
synchronizes the modules. The approach is presented in this
section even though it deals primarily with the sensory
processing aspects of the problem because there is a conscious
attempt to define a functional architecture before proceeding
with the design. The system philosophy is to provide as much
top-down guidance as possible and to exploit sensor modality



difference to produce complementary rather than competing
perceptual processes. CODGER is a communications database with
geometric reasoning. It has a whiteboard which is equivalent to
a blackboard with parallel execution of modules including
geometric reasoning. CODGER is used for the Autonomous Land
Vehicle (ALV) where the processing associated with the perception
of the environment is the bottleneck. The other parts of the
ALV, the captain for example, are relatively easy because a
human does nearly all of the complex planning.

3. NASA/NBS STANDARD REFERENCE MODEL FOR TELEROBOT CONTROL SYSTEM
ARCHITECTURE (NASREM)

Another functional architecture is the NASA/NBS Standard
Reference Model for Telerobot Control System Architecture
(NASREM). While NASREM focuses on the application of robots to
space, the same approach has been used to develop robot systems
for manufacturing [5], undersea vehicles [6], remotely driven
vehicles [7], shipbuilding robots [8], etc., and it is therefore
argued that the architecture is, in some sense, generic for robot
control systems. The fundamental paradigm of the control system
is shown in Figure 1. The control system architecture is a three
legged hierarchy of computing modules, serviced by a
communications system and a global memory. The task
decomposition modules perform real-time planning and task
monitoring functions; they decompose task goals both spatially
and temporally. The sensory processing modules filter,
correlate, detect, and integrate sensory information over both
space and time in order to recognize and measure patterns,
features, objects, events, and relationships in the external

world. The world modeling modules answer dqueries, make
predictions, and compute evaluation functions on the state space
defined by the information stored in global memory. Global

memory is a database which contains the system’s best estimate of
the state of the external world. The world modeling modules keep
the global memory database current and consistent.

The first leg of the hierarchy consists of task decomposition
modules which plan and execute the decomposition of high 1level
goals into low level actions. Task decomposition involves both a
temporal decomposition (into sequential actions along the time
line) and a spatial decomposition (into concurrent actions by
different subsystems). Each task decomposition module at each
level of the hierarchy consists of a job assignment manager, a
set of planners, and a set of executors. These decompose the
input task into both spatially and temporally distinct subtasks.

The second leg of the hierarchy consists of world modeling
modules which model (i.e., remember, estimate, predict) and
evaluate the state of the world. The "world model" is the
system’s best estimate and evaluation of the history, current
state, and possible future states of the world, including the



states of the system being controlled. The "world model"
includes both the world modeling modules and a knowledge base
stored in a global memory database where state variables, maps,
lists of objects and events, and attributes of objects and events
are maintained. The world model maintains the global memory
knowledge base by accepting information from the sensory systen,
provides predictions of expected sensory input to the
corresponding sensory system modules, based on the state of the
task and estimates of the external world, answers "What is?"
questions asked by the executors in the corresponding task
decomposition modules, and answers "“What if?" questions asked by
the planners in the corresponding task decomposition modules.

The third leg of the hierarchy consists of sensory processing
sensory system modules. These recognize patterns, detect events,
and filter and integrate sensory information over space and time.
The sensory system modules at each level compare world model
predictions with sensory observations and compute correlation
and difference functions. These are integrated over time and
space so as to fuse sensory information from multiple sources
over extended time intervals. Newly detected or recognized
events, objects, and relationships are entered by the world
modeling modules into the world model global memory database, and
objects or relationships perceived to no longer exist are
removed. The sensory system modules also contain functions which
can compute confidence factors and probabilities of recognized
events, and statistical estimates of stochastic state variable
values.

The control architecture has an operator interface at each level
in the hierarchy. The operator interface provides a means by
which human operators, either in the space station or on the
ground, can observe and supervise the telerobot. Each level of
the task decomposition hierarchy provides an interface where the
human operator can assume control. The task commands into any
level can be derived either from the higher 1level task
decomposition module, from the operator interface, or from some
combination of the two. Using a variety of input devices, a
human operator can enter the control hierarchy at any level, at
any time of his choosing, to monitor a process, to insert
information, to interrupt automatic operation and take control of
the task being performed, or to apply human intelligence to
sensory processing or world modeling functions.

The sharing of command input between human and autonomous control
need not be all or none. It is possible in many cases for the
human and the automatic controllers to share control of a
telerobot system simultaneously. For example, in an assembly
operation, a human might control the position of an end effector
while the robot automatically controls its orientation. For a
more detailed description of NASREM, see [9].



4. NIST IMPLEMENTATION OF NASREM

In order to implement a functional architecture, especially one
like NASREM which allows evolution with technology, the
interfaces must be carefully defined. Although the NASREM
functional architecture specifies the purpose of each module in
the control system hierarchy, it does not completely specify the
interfaces between modules. This section will describe the
method by which the interfaces for the SERVO level of the
hierarchy have been defined. The method involves gathering all
of the algorithms available for SERVO 1level control, dividing
each algorithm into the parts which inherently belong to task
decomposition, world modeling, and sensory processing, and then
deriving the interfaces which will support these algorithms. Any
design, however, must constrain the problem sufficiently so that
detailed interfaces can be devised.

With this in mind, the Servo Level design was based on a
fundamental control approach which computes a motor command as a
function of feedback system state y, desired state (attractor)
Yq, and control gains. In this approach, the gains are
coefficients of a linear combination of state errors (y- Yq) - The
system state and its attractor are composed from the phy51ca1
quantities to be controlled, (i.e., position, force, etc.,) and
can be expressed in an arbitrary coordinate system. This type of
algorithm is the basis for almost all manipulator control schemes
f10]. However, this basic algorithm 1is inadequate for
controlling the gross aspects of manipulator motion, as described
in {11]. The algorithm can provide "“small" motions so that the
dynamics of the servo algorithm itself are not significant. This
means that the Primitive Level must generate the gross dynamics
of the motion through a sequence of inputs to the Servo Level.
This can be achieved through an appropriate sequence of either
attractor points [10,12] or gain values [11].

Figure 2 depicts the detailed Servo Level design. The task
decomposition module at the Servo Level receives input from
Primitive in the form of the command specification parameters.
The command parameters include a coordinate system specification
C, which indicates the coordinate system in which the current
command is to be executed. C, can specify joint, end-effector, or
Cartesian (world) coordinates. Given with respect to this
coordinate system are desired position, velocity, and
acceleration vectors (zg, zq, 2g) for the manipulator, and the
desired force and rate of change of force vectors (fd £3) -
These command vectors form the attractor set for the manlpulator.
The K’s are the gain coefficient matrices for error terms in the
control equations. The selection matrices (S,S’) apply to
certain hybrid force/position control algorithms. Finally, the
"Algorithm”" specifier selects the control algorithm to be
executed by the Servo Level.

When the Servo Level planner receives a new command
specification, the planner transmits certain information to world



modeling. This information includes an attention function which
tells world modeling where to concentrate its efforts, i.e. what
information to compute for the executor. The executor simply
executes the algorithm indicated in the command specification,
using data supplied by world modeling as needed.

The world modeling module at the Servo Level computes model-
based quantities for the executor, such as Jacobians, inertia
matrices, gravity compensations, Coriolis and centrifugal force
compensations, and potential field (obstacle) compensations. 1In
addition, world modeling provides its best guess of the state of
the manipulator in terms of positions, velocities, end-effector
forces and joint torques. To do this, the module may have to
resolve conflicts between sensor data, such as between 3joint
position and Cartesian position sensors.

Sensory processing, as shown in Figure 2, reads sensors relevant
to Servo and provides the filtered sensor readings to world
modeling. In addition, certain information is transmitted up to
the Primitive Level of the sensory processing hierarchy.
Primitive uses this information, as well as information from
Servo Level world modeling, to monitor execution of its
trajectory. Based on this data, Primitive computes the stiffness
(gains) of the control, or switches control algorithms
altogether. For example, when Primitive detects a contact with a
surface, it may switch Servo to a control algorithm that
accommodates contact forces.

A more complete description of the Servo Level is available in
[10] where the vast majority of the existing algorithms in the
literature are described. The same process for developing the
interfaces based on the literature has also been performed for
the Primitive level and is available in ([12]. While the
procedure is planned for each level in the hierarchy, the amount
of 1literature support tends to decrease as one moves up the
hierarchy.

Once the interfaces are defined, it 1is possible to choose a
computer architecture and begin to realize the system. While
every effort is being made to do the job properly, there is no
reason to assume that the implementation at NIST is optimal in
any way. It is simply illustrates one realistic method to
implement the NASREM architecture.

While a functional architecture is technology independent, its
implementation obviously depends entirely on the state-of-the-art
of technology. The designer must choose existing computers,
buses, languages, etc., and, from these tools, produce a computer
architecture capable of performing the functions of the
functional architecture. The system must adequately meet the
real~-time aspects of the controller so that adequate performance
is achieved through careful consideration of computer choice,
multiple processor real-time operating system, inter-processing
communication requirements, tasking within certain processors,



etc. For a more detailed description of this methodology, see
[13].

The NIST implementation considers two aspects of the process:
the development environment on which the code is written,
debugged, and tested as well as possible, and the target
environment where the code for the real-time robot control system
is executed. Figure 3 shows the approach. A network of SUN
workstations running UNIX is wused for the development
environment, sacrificing the speed of the developed code for the
ease of development. Oonce the code 1is tested as well as
possible, it is downloaded to the target system. The target
system consists of a VME backplane of several (currently 6) 68020
processors. For rapid iconic image processing, the PIPE system
[14] is integrated into the system. The target hardware drives a
Robotics Research Corp. K-1607 arm.

From the software side, the multiprocessing operating system used
for the target is required to be as simple as possible so that
the overhead is minimized. The duties of the operating system
are limited to very simple actions such as downloading executable
code, starting up the processors, and interprocessor
communication. While tasking is not performed at the lower
levels of the hierarchy because of the overhead associated with
context switches, it is desirable at higher 1levels in the
hierarchy which are not as time critical. NIST researchers are
currently investigating three alternatives for tasking: tasking
provided by the native ADA compiler, pSOS tasking, and ADA
tasking. Interprocessor communications alternatives including
PRISM, sockets, etc., must also be evaluated empirically. The
actual application code is written in ADA. Although ADA
compilers cannot currently produce code as efficient as other
languages such as C, NIST researchers have shown that the gap is
steadily decreasing ([15].

The application code is developed by programming the processes
which achieve the functions associated with the boxes in the
functional architecture. The problem then becomes one of
assigning each of the processes, such as those shown in Figure 2,
to a particular processor. There is a clear trade-off between
the cost of the solution and the performance of the systemn.
There are currently no software tools which automatically perform
this assignment based on an arbitrary index of performance. The
approach at NIST is step-wise refinement of the performance of
the system. Given the particular hardware being used, a certain
number of processors 1is chosen arbitrarily. For that
configuration, the processes are assigned to the processors.
Then, the system is evaluated in terms of its performance. If
the performance is unacceptable, the designer has several
options. The first option is to add more processors. This
alternative is balanced against additional communication required
by the processors. Another alternative is to add faster
processors or special purpose processors, such as dynamics chips,
which optimize particularly compute intensive operations. This



trade-off clearly relates to cost. Another alternative is to
reassign the processes to the processors in order to balance the
workload of each processor. Each of the alternatives can be used
by the designer in order to improve the performance of the
system. This allows a particular configuration which implements
the functional architecture to change with time as improvements
in technology are realized.

5. CONCLUSION

While there are many competing computer architectures for robot
control, there are relatively few functional architectures. Some
purport to be general in nature while others are satisfied with
achieving a set of specifications for a particular application.
The ideal situation would be if there were some way to prove
mathematically which architecture is the best. Unfortunately,
this 1is does not appear to be possible at the present time
because the proof of optimality is intimately connected with
defining and understanding intelligence. If it is difficult to
define intelligence, it should be no wonder that building an
intelligent system has also been shown to be a formidable task.

Being unable to prove optimality cannot imply that research in
the area of functional architectures for robot control is futile.
Architectures which have been considered to be generic have been
suggested but there is really no way to discuss the relative
merits of each approach without empirically obtained evidence.
The most prudent course of action would be to implement some of
these "general" architectures and find out precisely what is
right and wrong with each. Hopefully, this approach, which can
be considered to be step-wise refinement, will lead to more
global generalizations of the robot control problem, and
ultimately suggest an architecture which holds the paradigm for
truly intelligent robot behavior in a machine.
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FIGURE 3 - NIST Implementation of NASREM



